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VARIATIONALLY COMPLETE ACTIONS
ON COMPACT SYMMETRIC SPACES

CLAUDIO GORODSKI & GUDLAUGUR THORBERGSSON

Abstract
We prove that an isometric action of a compact Lie group on a compact
symmetric space is variationally complete if and only if it is hyperpolar.

1. Introduction

The main result of this paper is the following theorem:

Theorem. An isometric action of a compact Lie group on a com-
pact symmetric space is variationally complete if and only if it is hyper-
polar.

Variationally complete actions were introduced by Bott in [1] (see
also [2]). Let G be a compact Lie group acting on a complete Rie-
mannian manifold M by isometries. A geodesic γ in M is called G-
transversal if it is orthogonal to the G-orbit through γ(t) for every t.
One can show that a geodesic γ is G-transversal if there is a point t0
such that γ̇(t0) is orthogonal to Gγ(t0). A Jacobi field along a geodesic
in M is called G-transversal if it is the variational vector field of a vari-
ation through G-transversal geodesics. The action of G on M is called
variationally complete if every G-transversal Jacobi field J in M that
is tangent to the G-orbits at two different parameter values is the re-
striction of a Killing field on M induced by the G-action. It is proved
in [2] on p. 974 that instead of requiring tangency at two different points
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in the definition of variational completeness it is equivalent to require
tangency at one point and vanishing at another point.

Conlon considered in [3] actions of a Lie group G on a complete
Riemannian manifold M with the property that there is a connected,
complete submanifold Σ of M that meets all orbits of G in such a way
that the intersections between Σ and the orbits of G are all orthogonal.
Such a submanifold is called a section and an action admitting a section
is called polar. Notice that neither do we assume as Conlon in [3] that
Σ is closed nor do we assume that it is properly embedded as is usually
required in the recent literature on the subject. It is easy to see that a
section Σ is totally geodesic inM . An action admitting a section that is
flat in the induced metric is called hyperpolar. Conlon proved in [3] that
a hyperpolar action of a compact Lie group on a complete Riemannian
manifold is variationally complete. Notice that he does not use in his
proof that the sections of the action are closed. His result therefore
implies one direction of the main theorem of this paper.

In the case of Euclidean spaces, hyperpolar representations were
classified by Dadok in [4]. As a consequence of his classification he
obtained that a hyperpolar representation of a compact Lie group is
orbit equivalent to the isotropy representation of a symmetric space.
(We recall that two isometric actions are said to be orbit equivalent if
there is an isometry between the action spaces under which the orbits
of the two actions correspond.)

On the other hand, we classified variationally complete representa-
tions in [6]. As a consequence of our classification we obtained that a
variationally complete representation of a compact Lie group is hyper-
polar. Di Scala and Olmos gave in [5] a very short, simple proof of this
result. It follows that a representation is hyperpolar if and only if it is
variationally complete.

Next we discuss the case of compact symmetric spaces. There are
two important classes of examples of hyperpolar actions on them. It
is clear that a cohomogeneity one action of a compact Lie group on a
compact symmetric space is hyperpolar. Hermann constructed in [9]
a class of examples of variationally complete actions on compact sym-
metric spaces which in fact turned out to be hyperpolar. Namely, if K1

and K2 are two symmetric subgroups of the same compact Lie group
G, then the action of K1 on G/K2 is hyperpolar and so is the action of
K1 ×K2 on G. Kollross [10] classified hyperpolar actions on compact
irreducible symmetric spaces. It follows from his classification that, in
the irreducible case, all hyperpolar actions belong to either one of these
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classes.
Finally, we add that the concepts of hyperpolarity and variational

completeness admit natural extensions in the context of proper Fred-
holm actions of Hilbert-Lie groups on Hilbert spaces (see [11] and [12]).
We shall make use of them in the course of our proof.

2. The proof of the theorem

Conlon proved in [3] that hyperpolar actions are variationally com-
plete as we pointed out in the introduction. In this section we will prove
the converse of his result for actions on compact symmetric spaces. Our
strategy is as follows. First we reduce to the case of a symmetric space
of compact type. Next we lift the action on the symmetric space to a
variationally complete action of a path group on a Hilbert space. Then
we use an argument similar to that in [5] to show that the lifted action
is hyperpolar. Finally, it is easy to see that a section for the action on
the Hilbert space induces a flat section for the original action.

Let M be a compact Riemannian symmetric space. We identify M
with the coset space G/K, where G is the connected component of the
group of all isometries of M and K is the isotropy subgroup of a chosen
base point. Let H be a compact Lie group acting by isometries on M .
An action of a group is variationally complete (resp. hyperpolar) if and
only if the same is true for the restriction of that action to the connected
component of the group. This follows from the definition in the case
of variationally complete actions and is easy in the case of hyperpolar
actions, see Proposition 2.4 in [8]. We can thus assume that H is a
connected, closed subgroup of G.

Let M̂ be a compact Riemannian covering space of M which splits
as a product of a torus T k and a symmetric space N of compact type.
Let Ĝ be the connected component of the group of all isometries of M̂ .
Then Ĝ is a covering group of G and we let Ĥ denote the subgroup of
Ĝ which is the connected component of the inverse image of H. Notice
that the action of Ĥ on M̂ is variationally complete if the one ofH onM
is so. In this case, the restriction σ2 of the action of Ĥ to N is clearly
still variationally complete. We will prove below that a variationally
complete action on a symmetric space of compact type is hyperpolar.
Since the restriction σ1 of the action of Ĥ to T k is orbit equivalent to
the action of a torus on T k and therefore hyperpolar, it follows that the
product action σ1 × σ2 on T k × N = M̂ is hyperpolar. The action of
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Ĥ on M is therefore also hyperpolar since it is orbit equivalent to the
product action of σ1×σ2 on M̂ , which can be seen by arguments similar
to those in the proof of Theorem 4 (ii) in [4] or of Proposition 3.4 (d)
in [6]. Now we can simply project a section of the Ĥ-action in M̂ down
to M to see that the action of H on M is hyperpolar.

It follows from the discussion in the previous paragraph that from
now on we can restrict to the case where M is of compact type. In
this case the group G is semisimple. There is an involution σ of G such
that K is open in the fixed point set of σ. Now the Lie algebra of G
decomposes into the ±1-eigenspaces of dσ, g = k + p, where k is the
Lie algebra of K, and the Riemannian metric in M is the G-invariant
metric induced by some AdG-invariant inner product on g. The group
H is a closed subgroup of G so that it acts on M by left translations,
and H × K acts on G by (h, k) · g = hgk−1, where h ∈ H, k ∈ K
and g ∈ G. Clearly, the projection π : G → G/K is an equivariant
Riemannian submersion.

Lemma 1. If the action of H on M is variationally complete, then
the action of H ×K on G is also variationally complete.

Proof. Let γ be an H×K-transversal geodesic in G defined on [0, 1]
and let J be anH×K-transversal Jacobi field along γ such that J(0) = 0
and J(1) is tangent to the H ×K-orbit through γ(1). We must show
that J is the restriction along γ of an H ×K-Killing field.

We first identify the tangent and normal spaces to the H×K-orbits
in G. Let h be the Lie algebra of H. Then h is a subalgebra of g and we
denote by h⊥ its orthogonal complement in g with respect to the AdG-
invariant inner product on g. Note that [h, h⊥] ⊂ h⊥ and that k and p

are also mutually orthogonal in g. Given a ∈ G, the tangent space to
H ·a ·K at the point a is h ·a+a · k. Therefore the left translates under
a−1 of the tangent and normal spaces of H · a ·K at a are respectively
la := k + Ada−1h and ma := p ∩ Ada−1h⊥. It will be convenient to set
qa := k ∩Ada−1h.

Let γ(0) = a ∈ G. Then γ(t) = aetX for X ∈ ma. Since J(0) = 0,
setting γα(t) = aet(X+αY ), where Y ∈ ma and Y = a−1 · J ′(0), defines a
variation of γ = γ0 through H ×K-transversal geodesics which induces
J . Since π : G → G/K is an equivariant Riemannian submersion and
each γα is a horizontal curve with respect to π, we have that {πγα} is a
variation of γ = πγ through H-transversal geodesics in M . Moreover,
the associated H-transversal Jacobi field J along γ satisfies J(0) = 0,
J
′(0) = a · π∗Y , and J(1) is tangent to the H-orbit through π(aeX). It
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follows by variational completeness of the action of H on M that J is
the restriction along γ of an H-Killing field onM , namely J(t) = Z ·γ(t)
for some Z ∈ h, which yields

J(t) =
∂

∂α


α=0

eαZπ(aetX)

=
∂

∂α


α=0

aetXπ(e−tXa−1eαZaetX)

= aetX · π∗Ad(aetX)−1Z.

This equation gives J(0) = a · π∗Ada−1Z. Since we already know that
J(0) = 0, we get that π∗Ada−1Z = 0, and then Ada−1Z ∈ k. Hence
Ada−1Z ∈ qa.

Since X ∈ p, the left translations by etX define isometries of the
symmetric spaceM which form a one-parameter group of transvections,
that is, each one of them induces parallel transport along the geodesic
s 
→ π(esX). Denote by ∇ the Levi-Civita connection of M . Then we
have

a−1 · J ′(0) = a−1 · ∇a·π∗XJ

= ∇π∗X(a−1 · J)
=

d

dt

∣∣∣
t=0

π∗Ad(aetX)−1Z

= π∗[Ada−1Z,X].

We deduce that J ′(0) = a·π∗[Ada−1Z,X]. But we already know that
J
′(0) = a·π∗Y . Since Y ∈ ma ⊂ p and [Ada−1Z,X] ∈ [qa,ma] ⊂ ma ⊂ p,
this implies Y = [Ada−1Z,X].

Finally, consider the H ×K-Killing field in G given by

U · y = ∂

∂α


α=0

eαZye−αAda−1Z .

Then

U · γ(t) = ∂

∂α


α=0

eαZaetXa−1e−αZa.

Therefore U · γ(0) = 0 and
d

dt


t=0

U · γ(t) = ∂

∂α


α=0

∂

∂t


t=0

eαZaetXa−1e−αZa

=
(
∂

∂α


α=0

AdeαZaX

)
· a

= [Z,AdaX] · a.
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Hence a−1 · d
dt


t=0

U ·γ(t) = Ada−1 [Z,AdaX] = Y. It follows that J(t) =
U · γ(t). q.e.d.

Let V = L2([0, 1]; g) denote the Hilbert space of L2-integrable paths
u : [0, 1] → g, and let Ĝ = H1([0, 1];G) denote the Hilbert-Lie group
of H1-paths in G parametrized on [0, 1] (the elements of Ĝ are the
absolutely continuous paths g : [0, 1] → G whose derivative is square
integrable). We have that Ĝ acts by affine isometries on V : g ∗ u =
gug−1 − g′g−1, where g ∈ Ĝ and u ∈ V . Let P(G,H × K) denote
the subgroup of all paths g ∈ Ĝ such that (g(0), g(1)) ∈ H × K. Let
ϕ : V → G be the parallel transport map defined by ϕ(u) = h(1), where
h ∈ Ĝ is the unique solution of h−1h′ = u, h(0) = 1. Then it is known
that (see [11, 12, 13]):

(a) the action of Ĝ on V is proper and Fredholm;

(b) ϕ(g ∗ u) = g(0)ϕ(u)g(1)−1, where g ∈ Ĝ and u ∈ V ;

(c) P(G,H ×K) ∗ u = ϕ−1((H ×K) · ϕ(u));
(d) the action of P(G, 1×G) on V is simply transitive;

(e) ϕ : V → G is a Riemannian submersion and a principal Ω1(G) :=
P(G, 1× 1)-bundle;

(f) the horizontal distribution H of ϕ is given by H(u) = {AdgŶ :
Y ∈ g}, where Ŷ denotes the constant path with value Y and g is
the unique element of P(G, 1×G) which satisfies u = g ∗ 0̂;

(g) the tangent space to the orbit through Ŷ at Ŷ is

{[ξ, Ŷ ]− ξ′ : ξ ∈ H1([0, 1], g), ξ(0) ∈ h, ξ(1) ∈ k}.

Lemma 2. If the action of H ×K on G is variationally complete,
then the action of P(G,H ×K) on V is also variationally complete.

Proof. Let γ be a transversal geodesic in V defined on [0, 1] and
let J be a transversal Jacobi field along γ such that J(0) = 0 and
J(1) is tangent to the orbit through γ(1). We must show that J is the
restriction along γ of a Killing field induced by the P(G,H×K)-action.

Let γ(0) = u ∈ V . Since P(G,H × K) ⊃ Ω1(G), we have that
the normal space to the orbit through u is contained in the horizon-
tal subspace H(u). Let g be the unique element of P(G, 1 × G) which
satisfies u = g ∗ 0̂. Now γ(t) = u + tAdgX̂ for some X ∈ g. Since
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J(0) = 0, setting γα(t) = u + tAdg(X̂ + αŶ ) = g ∗ ̂t(X + αY ), where
J ′(0) = AdgŶ for some Y ∈ g, defines a variation of γ = γ0 through
transversal geodesics which induces J . Since ϕ : V → G is an equiv-
ariant Riemannian submersion with respect to the homomorphism h ∈
P(G,H×K) 
→ (h(0), h(1)) ∈ H×K, and each γα is a horizontal curve
with respect to ϕ, we have that {ϕγα} is a variation of γ = ϕγ through
transversal geodesics in G. Moreover, the associated transversal Jacobi
field J along γ satisfies J(0) = 0, J ′(0) = dϕu(AdgŶ ) = Y · a, where
a = g(1)−1 = ϕ(u), and J(1) is tangent to the orbit through γ(1). It
follows by variational completeness of the action of H × K on G that
J is the restriction along γ of an H × K-Killing field on G, namely
J(t) = Z · γ(t)− γ(t) ·W for some Z ∈ h, W ∈ k.

Note that γ(t) = etXa. Therefore we can write J(t) = etX ·(Ade−tXZ
−AdaW ) · a. It follows that 0 = J(0) = (Z − AdaW ) · a, so that
W = Ada−1Z ∈ k ∩ Ada−1h = qa and J(t) = etX · (Ade−tXZ − Z) · a.
Then we have that Y · a = J

′(0) = [Z,X] · a, which gives Y = [Z,X].
Finally, consider the one-parameter subgroup {gα} of P(G,H ×K)

given by gα = geαZg−1. Note that gα(0) = eαZ ∈ H and gα(1) =
a−1eαZa ∈ K, so that gα is well defined. We next show that the Killing
field induced by {gα} coincides with J along γ. It suffices to compare
their initial values. Since gα ∗ γ = (geαZ) ∗ tX̂, we have

geαZ ∗ 0̂ = −(geαZ)′(geαZ)−1 = −g′g−1 = g ∗ 0̂ = u,

and

∂

∂t


t=0

∂

∂α


α=0

geαZ ∗ tX̂ =
∂

∂α


α=0

∂

∂t


t=0

tAdgeαZ X̂ + u

=
∂

∂α


α=0

AdgeαZ X̂

= Adg [̂Z,X]

= AdgŶ .

This completes the proof. q.e.d.

Lemma 3. If the action of P(G,H × K) on V is variationally
complete, then it is hyperpolar.

Proof. Let N0 in V be an orbit which is the preimage of a principal
orbit of H × K in G and γ a geodesic starting orthogonally to N0 in
p, i.e., ξ = γ′(0) is in the normal space νp(N0). Let N1 be the orbit
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through q = γ(1) and assume that also N1 is the preimage of a principal
orbit in G. It follows from variational completeness that γ(1) is not a
focal point of N0 along γ. We will prove that the tangent spaces of N0

at γ(0) and of N1 at γ(1) coincide if considered to be affine subspaces
of V . It follows that the normal spaces of N0 at γ(0) and of N1 at γ(1)
coincide which implies that the action is hyperpolar.

Let Ep ⊂ TpN0 be the direct sum of the eigenspaces of the Wein-
garten operator AN0

ξ corresponding to the nonvanishing eigenvalues and
define a corresponding subspace Eq ⊂ TqN1 with respect to the Wein-
garten map AN1

ξ . Similarly let Zp be the zero eigenspace in TpN0 and
Zq the zero eigenspace in TqN1. We will first prove that Ep = Eq using
an argument from [5]. Then we will prove that Zp = Zq. It will follow
that TpN0 = TqN1 finishing the proof.

Let X ∈ Ep be an eigenvector corresponding to the nonvanishing
eigenvalue λ of AN0

ξ . Then J(t) = (1 − λt)X is a transversal Jacobi
field along γ that is tangent to the orbit N0 and vanishes in t = 1

λ .
Variational completeness now implies that this Jacobi field is induced
by the action. Therefore J(t) is tangent to the orbit through γ(t) for
every t. Since γ(1) is not a focal point of N0 along γ, we have that
1 − λ �= 0 and then X lies in TqN1. It is now clear that X is an
eigenvector of AN1

ξ corresponding to a nonzero eigenvalue. This proves
that Ep ⊂ Eq. Analogous arguments imply Eq ⊂ Ep proving Ep = Eq.

It is left to prove that Zp = Zq. Let X ∈ Zp. Let {ψα} be a
one-parameter subgroup of P(G,H ×K) such that

X =
d

dα

∣∣∣
α=0

ψαp.

The variation {ψαγ} induces a Jacobi field J along γ with J(0) = X.
We first show that J(t) = X + tη where η ∈ νp(N0). In fact

J ′(0) =
d

dα

∣∣∣
α=0

ψα∗ξ = −AξX +∇⊥
d

dα

ψα∗ξ |α=0 = ∇⊥
d

dα

ψα∗ξ |α=0

which shows that J ′(0) lies in νp(N0) as we wanted to prove.
Our next goal is to show that η = 0. Assume that η �= 0. We know

that X + η ∈ TqN1. Then η �∈ νq(N1) since 〈X + η, η〉 = ||η||2 �= 0.
This implies that X + η �∈ Zq since otherwise J ′(1) = η would be a
normal vector. Let Y ∈ Eq be the image of X + η under the orthogonal
projection along Zq into Eq. We have that Y �= 0 or, which is the same,
〈Y,X + η〉 �= 0. We know that 〈Y,X〉 = 0 since Ep = Eq. We also have
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that 〈Y, η〉 = 0 since Y is a tangent vector of N0 in p and η is a normal
vector. Hence we also get 〈Y,X + η〉 = 0 which is a contradiction. This
proves that η = 0. We therefore have that J(t) = X which implies that
X ∈ TqN1 and it is clear that X ∈ Zq. It follows that Zp ⊂ Zq. The
proof that Zq ⊂ Zp is analogous. Hence Zp = Zq. q.e.d.

With the following lemma we finish the proof of the theorem in the
introduction.

Lemma 4. If the action of P(G,H ×K) on V is hyperpolar, then
the action of H on M is also hyperpolar.

Proof. Let Σ be a section of the action of P(G,H ×K) on V and
let A be the image of Σ under ϕ in G. We will show that A is a
flat section of the action of H × K on G. Since Σ is horizontal with
respect to the Riemannian submersion ϕ, we have that ϕ|Σ : Σ → G
is an isometric immersion. Property (c) before Lemma 2 implies that
dϕu(TuΣ) is perpendicular to the H×K-orbit through ϕ(u) in G for all
u ∈ V . It follows that A is a submanifold in G which meets all orbits
perpendicularly. Moreover A is flat since ϕ|Σ is an isometric immersion.
This finishes the proof that the action of H × K on G is hyperpolar.
Similar arguments show that π(A) is a flat section of the action of H
on M . q.e.d.

It is interesting to remark that it follows from the results in Sec-
tion 2 of [7] that, in the case where the metric in G is induced from
the Killing form of g, we have that A is a torus, and hence A and π(A)
are properly embedded sections. In the case where the metric in G is
not induced from the Killing form of g, it is easy to construct examples
of hyperpolar actions with sections that are not properly embedded.
One such example is the diagonal action of SO(3) on the product of
spheres S2(1) × S2(R) where R2 is irrational. (This follows because
γ(t) =

(
(cos t, sin t, 0),

(
R sin t

R2 , R cos t
R2 , 0

))
is a geodesic normal to

the orbits.) Here is another example. Let the symmetric space M be a
torus, and let T k be a proper subtorus of M that we think of as a Lie
group. The orbits of T k are the cosets of T k, and the image Σ under the
exponential map of the normal space of T k inM at the identity element
is clearly a section. If M is not a rational torus, the subtorus T k can
be chosen so that Σ is not properly embedded, see Section 2 in [7].
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